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Abstract

The Integrated Assessment Model (IAM) has extensively treated the adverse ef-

fects of climate change and the appropriate mitigation policy. We extend such a

model to include optimal policies for mitigation, adaptation and infrastructure

investment studying the dynamics of the transition to a low fossil-fuel economy.

We focus on the adverse effects of increase in atmospheric CO2 concentration

on households. Formally, the model gives rise to an optimal control problem of

finite horizon consisting of a dynamic system with five-dimensional state vec-

tor consisting of stocks of private capital, green capital, public capital, stock of

brown energy in the ground, and emissions. Given the numerous challenges to

climate change policies the control vector is also five-dimensional. Our solutions

are characterized by turnpike property and the optimal policy that accomplishes

the objective of keeping the CO2 levels within bound is characterized by a signif-

icant proportion of investment in public capital going to mitigation in the initial

periods. When initial levels of CO2 are high, adaptation efforts also start imme-

diately, but during the initial period, they account for a smaller proportion of

government’s public investment.
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1 Introduction

The Paris, December 2015, COP 20 agreement on climate change is aiming at reducing

the temperature increase to below 2oC. This implies that effective mitigation policies

need to be pursued that not only prevent the CO2 emission from rising further but to

reduce the annual emission substantially. The Paris agreement is detailed in the recent

IPCC (2018) report that demonstrates a higher probability of limiting global warming

to 1.5 C will only be obtained if the reduction of CO2 net emissions from 2020 to 2040

to zero is achieved and from then on the upper bound of CO2 is not exceeded anymore.

Since those upper limits create great policy challenges we propose here a modeling

strategy that, attempts to answer three questions coming up in this context: First,

what are the best strategies to keep the CO2 emission bounded by a predefined upper

bound, and, correspondingly, how can one steer down the CO2 emission if it already

has reached too high a level. Second, how can climate policies be scaled up and what

resources should be allocated to mitigation and adaptation efforts, especially for the

latter, in particular, when climate risk, due to a lack of emission reduction, is rising

and future economic, social, and ecological damages can be expected. A third issue is

of how the efforts of mitigation and adaptation are funded and how the funds should

dynamically be allocated between traditional infrastructure investment, mitigation and

adaptation efforts – and in what sequence.

Since mitigation policy means phasing in of renewable energy we also explore what

amount of traditional fossil energy is allowed to be extracted when setting some CO2

emission and temperature constraints. Our dynamic model, as it includes the phasing

in of renewable energy along with the issues mentioned above, can be considered an

extension of the Integrated Assessment Model(IAM).1

We present a dynamic global model with feedback control, representing an optimal

control, that allows us to consider the specific policies of infrastructure investment,

mitigation and adaptation. The model is micro-founded in the sense that we employ

a production technology which uses (private) physical capital and energy as inputs.

Labor input is suppressed for simplicity as it is supplied inelastically. There are two

sources of energy: non-renewable, brown energy produced by an extractive resource

sector and renewable, green energy produced with (private physical) green capital.

The emissions from brown energy use are a source of negative externality that directly

enters the (instantaneous) felicity function.

In our model the government levies lump-sum taxes to raise revenues,2 a portion of

which provides direct utility, another portion is invested in public (physical) capital,

and remaining part is administrative expense. The traditional use of public capital is

1For details of the IAM, see Nordhaus et al. (2000) and Nordhaus (2008).
2For models with other sources of finance, such as for example bond financing, see Bonen et al

(2016), and Orlov et al (2018)
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to serve as infrastructure investment that augments the productivity of the production

process.3 In our setup, the government can also use public capital for adaptation and

for mitigation and chooses the split between these three competing uses optimally.

The model gives rise to an optimal control problem of finite horizon consisting

of a dynamic system with five-dimensional state vector consisting of the stocks of

private capital, green capital, public capital, stock of brown energy in the ground, and

emissions. The control vector is also a five-dimensional, excluding the choice of split

for public capital mentioned earlier.

We characterize the optimal tax and investment policies for the government and

examine the resultant paths of important macroeconomic variables, particularly, of

those related to energy, emission, and resource extraction. The complexity of the

problem, however, necessitates both an analytical approach as well the use of numerical

methods.

Solving such a model of finite horizon poses the challenge to show that the turn-

pike properties are not violated and the trajectories of the finite horizon model can

approximate the solution of the infinite horizon case. This in fact can be shown when

we present the numerical solutions of the variants of our model with different initial

conditions. These numerical solutions allow us to investigate the optimal sequence of

climate policy decisions with respect to infrastructure, mitigation and adaptation. In

all cases considered in the paper, numerical solutions from our finite-horizon set up

recover the turnpike property that is characteristics of the infinite horizon models and

hence, good approximation to those models.

In terms of climate policy response, in our model, we find that the optimal policy can

keep the CO2 emission bounded for a wide-range of initial conditions of capital stocks

and CO2 levels. Specifically, we consider scenarios with high levels of capital stocks and

high levels of CO2 and with small levels of capital stocks with both high and low levels of

CO2. In all these cases, we find that the optimal policy that accomplishes the objective

of keeping the CO2 levels within bound is characterized by a significant proportion of

investment in public capital going to mitigation in the initial period. In fact, the time

path and the proportion going to mitigation are very similar across these scenarios.

In cases with high initial levels of CO2, adaptation efforts also start immediately, but

during the initial period, they account for smaller proportion of government’s public

investment than mitigation and do not change much during the initial period.

The remaining part of the paper is organized as follows. Section 2 describes the op-

timal control model of climate change. In Section 3, we discuss the necessary conditions

for the optimal solution and solve for the stationary solutions for the model. Section

4 works through the details of our numerical methods and describes the main results

of the paper. In particular, optimal policy for various initial conditions is discussed.

3This infrastructure investment can be considered to representing traditional as well as climate-

related infrastructure.
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Section 5 concludes.

2 Optimal Control Model of Climate Change

We extend the IAM to include the adverse effects of climate change with a view to study

the optimal policies for mitigation of and adaptation to climate change until a transition

to fossil-fuel-free green energy infrastructure is successful. The green energy capital is

a perfect substitute for fossil fuel in production. The climate change is modeled as

an adverse effect of increase in atmospheric CO2 concentration (M) on utility. The

mitigation efforts reduces the proportion of carbon in fossil fuel burned that escapes

into the atmosphere as CO2. In contrast, adaptation alleviates the harmful effects of

higher atmospheric CO2 levels.

The time (t) is continuous, and the horizon is finite (T ). The government raises

revenue (eP ) which is used for direct, utility-enhancing services and provision of public

(physical) capital/infrastructure (G), with possibility of some wastage. To analyze the

issue of climate change, besides its traditional use for enhancing productive efficiency in

the economy, we allow government to use public capital for mitigation and adaptation.

The output of the production process is given by

Y = (ν1G)βA(AgKg + Auu)α(Kp)
ζ . (1)

A,Ag, Au > 0, α, β, ζ > 0, and α + β + ζ < 1. Kg is the stock of green capital, Kp

is the stock of (private) physical capital, and ν1 ∈ (0, 1], as mentioned above, is the

fraction of public capital (G) used for the traditional purpose of enhancing productive

efficiency. Finally, u is the amount of fossil fuel resource extracted and used, measured

in terms of its carbon (CO2) content.

The felicity (utility) function depends on four input components: (i) per-capita

consumption C; (ii) the per-capita amount of tax revenue (α2eP , α2 ∈ [0, 1]) used

for direct welfare enhancement (e.g., healthcare); (iii) atmospheric concentration of

CO2 (M) above the long-run sustainable level-industrial level; and (iv) the per-capita

amount of public capital expenditure (ν2G, ν2 ∈ [0, 1)) allocated to climate change

adaptation.

The optimal control model so defined then has five state variables:

Kp : private physical capital per capita,

Kg : private green capital per capita,

G : public capital per capita,

M : CO2 (GHG) concentration in the atmosphere,

R : non-renewable resource (fossil energy),
and the five basic control variables are
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ip : investment in physical capital,

ig : investment in green capital,

ep : government’s net tax revenue,

u : extraction rate from the non-renewable resource,

C : per capita consumption,

In addition, we consider the following three allocations of public capital as control

functions:
ν1(t) : standard infrastructure,

ν2(t) : adaptation,

ν3(t) : mitigation.
We denote the state and control variables by

X = (Kp, Kg, G,R,M) ∈ IR5, U = (ip, ig, eP , u, C) ∈ IR5, ν = (ν1, ν2, ν3) ∈ IR3.

The dynamic system of the global model of climate change is given by

K̇p = ip − (δp + n)Kp, (2)

K̇g = ig − (δg + n)Kg, (3)

Ġ = α1eP − (δG + n)G, (4)

Ṁ = γ u− µ(M − κM̃)− θ(ν3 ·G)φ, (5)

Ṙ = −u, (6)

with initial conditions:

X(0) = X0 (7)

that will be specified later. The control constraint for the extraction rate u is given by

0 ≤ u(t) ≤ umax ∀ t ∈ [0, T ]. (8)

There are three potential uses of government revenues as mentioned earlier. The

amount α1eP is invested in public capital, α2eP provides direct utility, and (1 − α1 −
α2)eP is administrative expense/waste. Of the total public capital, G, a fraction ν1 is

the usual/traditional public capital that augments the productivity of the production

process. Another fraction ν2 is used for adaptation. The remaining fraction ν3 is used

for mitigation. Hence, the infrastructural and climate oriented allocations of public

capital satisfy the constraints:

νk(t) ≥ 0, ν1(t) + ν2(t) + ν3(t) = 1 ∀ t ∈ [0, T ]. (9)

Moreover, we have the resource constraint which is a control-state equality con-

straint:

s(X,U, ν) := Y − C − ip − ig − eP − uψR−τ

−χp

2

(
ip
Kp
− δp − n

)2

Kp − χg

2

(
ip
Kg
− δG − n

)2

Kg = 0.
(10)
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Let us now introduce the welfare functional. Recall, the felicity (utility) function

depends on (i) per-capita consumption C; (ii) the per-capita tax revenue (ν2eP , α2 ∈
[0, 1]); (iii) atmospheric concentration of CO2 (M) above the long-run sustainable level-

industrial level; and (iv) the per-capita expenditure on adaptation (ν2G, ν2 ∈ [0, 1)).

The preferences of the representative household (or the planner) are∫ T

0

e−(ρ−n)t 1

1− σ


[
C (α2eP )η

(
1− exp (−ξ (ν2G)ω)

M − κM̃
M̄ − κM̃

)ε]1−σ

− 1

 dt,

(11)

where M̃ is the preindustrial level of atmospheric CO2 and M̄ is the catastrophic

level, with κM̃ being the level that would not need any adaptation and is the long-run

sustainable level. ρ > 0 is the time rate of preference, n > 0 is the rate of population

growth, σ > 0 is the inverse of the elasticity of intertemporal substitution and η ∈ [0, 1],

ε ∈ [0, 1], ξ > 0, ω ∈ [0, 1], and κ > 0 are other parameters. The restrictions on

parameters ensure that social expenditures and adaptation are utility enhancing with

diminishing marginal utility and carbon emission that increase M reduce utility with

increasing marginal disutility.4

This approach differs from other models that map emissions to temperature changes

and then to reduced productivity-cum-output, see Nordhaus et al. (2000). We believe

the direct disutility approach better captures the wide ranging impacts of climate

change that may include health impacts, ecological loss and heightened uncertainty, in

addition to reduced productivity. Finally, note that the discount factor adjusts for the

population growth rate n from the pure discount rate ρ as all values are normalized by

the population.

The optimal control problem now consists in maximizing the welfare functional (11)

subject to the dynamical constraint and control constraints. To obtain a more compact

form of the optimal control problem we use the vector of state and control variables

(X,U, ν) introduced above to write the dynamical system (2)–(5) in the form

Ẋ(t) = f(X(t), U(t), ν(t)), X(0) = X0. (12)

Furthermore, let us denote the integrand of the welfare functional by

f0(X,U, ν) =
1

1− σ


[
C (α2eP )η

(
1− exp (−ξ (ν2G)ω)

M − κM̃
M̄ − κM̃

)ε]1−σ

− 1

. (13)

Then the optimal control problem can be written in compact form as follows:

Maximize U,ν W (U, ν =

T∫
0

e−(ρ−n)tf0(X(t), U(t), ν(t)) dt (14)

subject to the dynamical constraint (12), the control constraints (8), (9) and the mixed

control-state constraint (10).
4For σ ≥ 1, we only need η, ε > 0.
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Parameter Value Definition

ρ 0.03 Pure discount rate

n 0.015 Population Growth Rate

η 0.1 Elasticity of transfers and public spending in utility

ε 1.1 Elasticity of CO2-eq concentration in (dis)utility

ω 0.05 Elasticity of public capital used for adaptation in utility

σ 1.1 Intertemporal elasticity of instantaneous utility

A ∈ [1, 10] Total factor productivity

Ag ∈ [ 1 , 5 ] Efficiency index of green capital

Au ∈ [100, 400] Efficiency index of the non-renewable resource

α 0.1 Output elasticity of inputs, AgKg + Auu

β 0.5 Output elasticity of public infrastructure, ν1G

ψ 1 Scaling factor in marginal cost of resource extraction

τ 2 Exponential factor in marginal cost of resource extraction

δp 0.1 Depreciation rate of physical capital

δg 0.05 Depreciation rate of private capital

δG 0.05 Depreciation rate of public capital

χp
1

(δp+n)Ωp

χg
1

(δg+n)Ωg

Ωp ∈ [5, 15]

Ωg ∈ [5, 15]

α1 0.2 Proportion of tax revenue allocated to new public capital

α2 0.5 Proportion of tax revenue allocated to transfers and public

consumption

r̄ 0.07 World interest rate (paid on public debt)

M̃ 2.5 equilibrium concentration

γ 0.9 Fraction of greenhouse gas emissions not absorbed by the ocean

µ 0.01 Decay rate of greenhouse gases in atmosphere

κ 1 Atmospheric concentration stabilization ratio (relative to M̃)

θ 0.01 Effectiveness of mitigation measures

φ ∈ [ 0.2, 1 ] exponent in mitigation term (ν3 g)φ

Table 1: Parameter values
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3 Necessary Conditions and Stationary Solutions

We formulate the necessary conditions of the Maximum Principle (cf. Hestenes [9],

Pontryagin et al. [16], Hartl et al. [8]), Maurer et al. [2016], Greiner et al [2010]) using

the current-value Hamiltonian

H(X,λ, U, ν) = f0(X,U, ν) + λ f(X,U, ν), (15)

where

λ = (λ1, λ2, λ3, λ4, λ5) = (λKp, λKg, λG, λM , λR)

denotes the adjoint variables.

The adjoint variables λ(t) of the current-value Hamiltonian are related to the adjoint

variables λ̃(t) of the standard Hamiltonian by

λ(t) = e(ρ−n) λ̃(t),

which leads to the modified adjoint equation below. Since the process is subject to the

mixed control-state constraint (10), we consider the augmented current-value Hamil-

tonian

H(X,λ, η, U, ν) = H(X,λ, U, ν) + η s(X,U, ν). (16)

Let (X,U, ν) be an optimal solution of the control problem of maximizing (14) sub-

ject to the constraints (12),(8),(9), (1), and (10). To formulate the minimum conditions

for the controls we introduce the control set at time t:

Ω(t) = { (U, ν) ∈ R8 | ip(t), ig(t), eP (t) ≥ 0, C(t) > 0, 0 ≤ u(t) ≤ umax,

νk ≥ 0 (k = 1, 2, 3), ν1(t) + ν2(t) + ν3(t) = 1, s(X(t), U, ν) = 0 }
(17)

Then the Maximum Principle asserts the existence of a piecewise continuous adjoint

function λ : [0, tf ]→ R5 and a continuous multiplier function η : [0, tf ]→ R such that

the following conditions hold

Adjoint equations:

λ̇(t) = (ρ− n)λ(t)− ∂H
∂X

(X(t), λ(t), η(t), U(t), ν(t))

= (ρ− n)λ(t)− ∂H
∂X

(X(t), λ(t), η(t), U(t), ν(t))− η(t) ∂s
∂X

(X(t), U(t), ν(t)).

(18)

Minimum conditions for controls

H(X(t), λ(t), U(t), ν(t)) = max (U,ν)∈Ω(t) H(X(t), U, ν) (19)

Local minimum conditions when ip(t), ig(t), eP (t), C(t) > 0 :

∂H
∂v

(X(t), λ(t), U(t), ν(t)) = 0 for v ∈ { ip, ig, eP , C } (20)

We shall not further analyse the minimum conditions for the allocations ν(t).
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Now let us study the stationary solution of the canonical system and the minimum

conditions. Since our computations show that ν(tf ) ≈ (1, 0, 0), we fix ν = (1, 0, 0) in

the following analysis of the stationary point. In view of the equation Ṙ = u it is clear

that the extraction rate is u = 0. Hence, we can discard the adjoint equation λR in the

following analysis. Therefore, we consider the following 13 equations for the variables

(Kp, Kg, G,M), (λKp, λKg, λG, λM , (ip, ig, eP , C), η.

Equations for stationary state:

0 = ip − (δ + n)Kp,

0 = ig − (δ + n)Kg,

0 = α1eP − (δG + n)G,

0 = 0− µ(M − κ M̃).

(21)

Equations for adjoint (costate) variable:

0 = (ρ− n)λKp − ∂H
∂Kp

= (ρ− n)λKp + λKp(δp + n)− η(χp(ip/Kp − δp − n)(−ip/Kp)

+0.5χp(ip/Kp− δp − n)2 − ∂Y
∂Kp

0 = (ρ− n)λKg − ∂H
∂Kg

= (ρ− n)λKg + λKg(δg + n)− η(χg(ig/Kg − δg − n)(−ig/Kg)

+0.5χg(ig/Kg − δg − n)2 − ∂Y
∂Kg

0 = (ρ− n)λG − ∂H
∂G

= (ρ− n)λG + λG(δG + n)− ∂Y
∂G
− ∂f0

∂G

0 = (ρ− n)λM − ∂H
∂M

= (ρ− n)λM + ηλM(δG + n)− ∂f0
∂M
.

(22)

Equations for maximizing controls v ∈ {ip, ig, eP , C}

0 = ∂H
∂ip

= λKp + η(1 + χp(ip/Kp − δp − n)),

0 = ∂H
∂ig

= λKg + η(1 + χg(ig/Kg − δg − n)),

0 = ∂H
∂eP

= λGα1 + η + ∂f0
∂eP

,

0 = ∂H
∂C

= ∂f0
∂C

+ η.

(23)

Finally, we consider the equation resulting from the mixed control-state (10):

0 = s(X,U, ν) = Y − C − ip − ig − eP − uψR−τ

−χp

2

(
ip
Kp
− δp − n

)2

Kp − χg

2

(
ip
Kg
− δG − n

)2

Kg .
(24)

The partial derivatives of the integrand f0(X,U, ν) in equations (21) -(23) are given by

∂f0
∂C

= {(1− σ)C−σ(α2eP )η(1−σ)[1− exp(−ξ(ν2G)ω)

·(M − κM̃)/(M̄ − κM̃)]ε(1−σ) − 1}/(1− σ),
∂f0
∂eP

= {C1−σα2η(1− σ)(α2eP )η(1−σ)−1[1− exp(−ξ(ν2G)ω)

·(M − κM̃)/(M̄ − κM̃)]ε(1−σ) − 1}/(1− σ),
∂f0
∂G

= 0 in view of ν2 = 0 in the steady state.

(25)
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The partial derivatives of the production function Y (X,U, ν) in equation (1) are given

by
∂Y
∂Kp

= A(ν1G)β(AgKg + Auu)αζKζ−1
p ,

∂Y
∂Kg

= A(ν1G)βαAg(AgKg + Auu)α−1Kζ
p ,

∂Y
∂G

= Aβν1(ν1G)β−1(AgKg + Auu)αKζ
p ,

(26)

We use AMPL and Ipopt (described in Section 4) to solve the 13 equations in (21)–(24)

with parameters in Table 1 and obtain the stationary solution:

Kp = 2.2164, Kg = 0.53731, G = 0.66746, M = 3.0,

ip = 0.25489, ig = 0.034925, eP = 0.14462, C = 0.74766, u = 0,

λKp = 2.24939, λKg = 2.24939, λG = 3.6216, λM = −12.121, µs = −2.24939.

(27)

Our computations in the next section will demonstrate that the solution shows a turn-

pike behavior, i.e., the state and control trajectories stay close to the stationary values

in (27) on a rather large intermediate time interval, once dynamics dictated by ini-

tial conditions have played out. However, for a free terminal state the trajectories

for the Kp, Kg, G sharply decrease on the terminal time interval. To counteract this

behavior we shall impose the stationary values of the state variables as terminal state

constraints. This will furnish a good approximation of the infinite-horizon solution.

4 Numerical Solutions

4.1 Discretization and Nonlinear Programming Methods

We choose the numerical approach “First Discretize then Optimize” to solve the opti-

mal control problem OC(p) defined in (12)–(14). The discretization of the control prob-

lem on a fine grid leads to a large-scale nonlinear programming problem (NLP) that can

be conveniently formulated with the help of the Applied Modeling Programming Lan-

guage (AMPL) [6]. AMPL can be linked to several powerful optimization solvers. We

use the Interior-Point optimization solver IPOPT developed by Wächter and Biegler

[17]. The details of the discretization methods may be found in [1, 4, 11]. The sub-

sequent computations for the terminal time T = 200 are performed with N = 1000

to N = 5000 grid points using the trapezoidal rule as integration method. Choosing

the error tolerance tol = 10−8 in IPOPT, we can expect that the state variables are

correct up to 6 or 7 decimal digits. The Lagrange multipliers and adjoint variables can

computed a posteriori in IPOPT thus enabling us to verify the necessary optimality

conditions.
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4.2 Solutions with Free Terminal States

We begin our numerical analysis with an illustrative example with free terminal state.

We choose the following as the terminal time and the initial conditions:

T = 200 : Kp(0) = 2.5, Kg(0) = 0.3, G(0) = 0.8, M(0) = 3.25, ;R(0) = 1.

As integration method we choose the trapezoidal rule with N = 2000 grid points. The

control and state trajectories are displayed in Figure 1.
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Figure 1: State and control trajectories for T = 200,Kp(0) = 2.5,Kg(0) = 0.3, G(0) = 0.8,M(0) =

3.25, R(0) = 1, and free terminal state X(tf ). Top row: (left) physical capital Kp, green capital Kg

and government capital G, (middle) CO2 concentration M , (right) resource R. Middle row: (left)

investments ip, ig and tax revenue eP , (middle) consumption C (right) extraction rate u. Bottom

row: (left) consumption C and productivity Y , (middle) infrastructure ν1, (right) adaptation ν2 and

mitigation ν3.

As Figure 1 shows, even for large initial conditions and high atmospheric CO2

concentration, and free terminal states of the variables, the policy variables are able

to steer down the CO2 concentration toward the steady state. This of course holds

only if there is no bifurcation and regime switch to a worse steady state, as studied

in Greiner et al. (2010). In fact, in our model here, one can observe that all state

variables and control variables move to some reasonable steady state that has the CO2
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concentration under control. This is a reflection of the turnpike property that charac-

terizes dynamic macroeconomic models. Once the non-renewable fossil fuel extraction

becomes economically unproductive (with u(t) ≈ 0) the model converges to the turn-

pike corresponding to the long-run steady state solution described in Section 3, until

unnecessary dynamics introduced by finite terminal time kicks in later. To eliminate

this unwanted terminal dynamics, in our further analysis, we choose the terminal states

to be the same as the steady state solution when we solve the model.

Note that infrastructure policy first gives way to expanding mitigation efforts which

is large at the initial periods and the adaptation policy kicks in later. Note also that

the ratios of our macroeconomic variables stay over time in a reasonable range. This

holds for all of our subsequent simulations.

4.3 Solutions with Prescribed Terminal States

Our analysis in this section begins with the consideration of high initial value of the

emission stock. We examine what optimal policy looks like in this situation. We inves-

tigate cases with both a small and a high value of various capital stocks. Thereafter,

we also look for the situation with low initial value of the emission stock.

4.3.1 Small Initial Capital Stocks and High Emission Stock

Let us first consider small initial values for capital stocks5 and, as stated earlier, pre-

scribe as terminal conditions for the state variables Kp, Kg, G the stationary values

(27):

Kp(0) = 1, Kg(0) = 0.02, G(0) = 0.2, M(0) = 3.25, R(0) = 1,

Kp(tf ) = 2.2164, Kg(tf ) = 0.53731, G(tf ) = 0.66746.

Figure 2 shows that for small initial capital stocks and high atmospheric CO2 con-

centration, the policy choices are able to steer down the CO2 concentration toward

the steady state, after some increase during the initial periods. Here too, we can ob-

serve that all state and control variables move to some reasonable steady state that

keeps the CO2 concentration under control. In particular, output, consumption, and

investments all remain fairly stable, except for brief initial transition associated with

low initial levels of capital stocks. Figure 3 demonstrates that there are corresponding

properties holding for the trajectories of the adjoint variables.

Note that, here again, the spending on traditional infrastructure is lower at the

beginning with large efforts at mitigation as well as rising efforts at adaptation. Overall,

mitigation is the focus of the public investment policy in the beginning as it accounts

for more than twice of investment than adaptation. Over time, the mitigation policy is

5This may correspond to developing economies with low per capita income, yet facing already a

high atmospheric CO2 concentration.

12



 0

 0.5

 1

 1.5

 2

 2.5

 0  50  100  150  200

time  t  (years)

 capital  Kp (red) , Kg (green) , G (blue)

 3.05

 3.1

 3.15

 3.2

 3.25

 3.3

 0  50  100  150  200

time  t  (years)

CO2 concentration  M

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

time  t  (years)

Resource  R

 0

 0.1

 0.2

 0.3

 0.4

 0  50  100  150  200

time  t  (years)

Investments ip , ig , and tax revenue  ep 

ip
ig

ep

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0  50  100  150  200

time  t  (years)

Consumption  C

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  50  100  150  200

time  t  (years)

Extraction rate  u

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

 0  50  100  150  200

time  t  (years)

Production  Y  and consumption  C

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0  50  100  150  200

time  t  (years)

infrastructure  ν1

 0

 0.05
 0.1

 0.15

 0.2

 0.25

 0.3

 0  50  100  150  200

time  t  (years)

adaptation  ν2 , mitigation  ν3  

ν2
ν3

Figure 2: State and control trajectories for T = 200, ”small” initial values Kp(0) = 1,Kg(0) =

0.02, G(0) = 0.2, R(0) = 1,M(0) = 3.25 and prescribed terminal stationary values Kp(tf ) =

2.2164,Kg(tf ) = 0.53731, G(tf ) = 0.66746 in (27). Top row: (left) physical capital Kp, green capital

Kg and government capital G, (middle) CO2 concentration M , (right) resource R. Middle row: (left)

investments ip, ig and tax revenue eP , (middle) consumption C (right) extraction rate u. Bottom

row: (left) consumption C and productivity Y , (middle) infrastructure ν1, (right) adaptation ν2 and

mitigation ν3.
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Figure 3: Adjoint variables for ”small” initial values. (left) current value adjoint variables

λKp, λKg, λG, (middle) current value adjoint variable λM , (right) current value adjoint variable λR.

first to slow down, but adaptation continues for a long time. During the initial periods,

the spending on mitigation and adaptation together starts with accounting for 35% of

the public investment in infrastructure, gradually falling to 15%, before converging

asymptotically to zero over time. The optimal solution also leaves some of the fossil
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fuels (R) in ground.

4.3.2 Large Initial Capital Stocks and High Emission Stock

We now consider a complementary scenario in which initial values for capital stocks,

Kp(0) and G(0), exceed the stationary values, and, again, impose the stationary values

of Kp, Kg, G as the terminal constraints:

Kp(0) = 3, Kg(0) = 0.5, G(0) = 1.0, M(0) = 3.25, R(0) = 1,

Kp(tf ) = 2.2164, Kg(tf ) = 0.53731, G(tf ) = 0.66746.
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Figure 4: State and control trajectories for ”large” initial values Kp(0) = 3,Kg(0) = 0.5, G(0) =

1.0,M(0) = 3.25, R(0) = 1 and terminal constraints Kp(tf ) = 2.2164,Kg(tf ) = 0.53731, G(tf ) =

0.66746. Top row: (left) physical capital Kp, green capital Kg and government capital G, (middle)

CO2 concentration M , (right) resource R. Middle row: (left) investments ip, ig and tax revenue eP ,

(middle) consumption C (right) extraction rate u. Bottom row: (left) consumption C and productivity

Y , (middle) infrastructure ν1, (right) adaptation ν2 and mitigation ν3.

Figure 4 shows that even with large initial capital stocks and high atmospheric CO2

concentration, the policy variables are able to steer down the CO2 concentration toward

the steady state. This time, however, without any increase during the initial periods.

Again, we can observe that all state and control variables (and adjoint variables) move
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Figure 5: Adjoint variables for ”small” initial values. (left) current value adjoint variables

λKp, λKg, λG, (middle) current value adjoint variable λM , (right) current value adjoint variable λR.

to some reasonable steady state that keeps the CO2 concentration under control. In

particular, output, consumption, and investments all remain fairly stable, after the

initial periods. But, as in this case, the economy has excess capital stocks, it reduces

them slowly during the initial periods, which imparts a discernible (downward) slope

to consumption, output, and capital stock for the entire duration of the initial periods.

Figure 5 shows again the corresponding trajectories of the adjoint variables.

As in the case with low initial capital stocks, the spending on traditional infrastruc-

ture is lower at the beginning with large efforts at mitigation as well as rising efforts at

adaptation. Once again, mitigation is the focus of the public investment policy in the

beginning as it accounts for more than twice of investment than adaptation. Over time,

the mitigation policy slows down, but adaptation continues for a long time. Once again,

during the initial periods, the spending on mitigation and adaptation together starts

with accounting for 35% of the public investment in infrastructure, gradually falling to

10%, before converging asymptotically to zero over time. The optimal solution again

leaves some of the fossil fuels (R) in the ground.

4.3.3 Small Initial Capital Stocks and Low Emission Stock

We next turn to the case with small initial values for the capital stocks and low CO2 con-

centration but, again, prescribe as terminal conditions for the state variables Kp, Kg, G

the stationary values (27):

Kp(0) = 1, Kg(0) = 0.02, G(0) = 0.2, M(0) = 2.6, R(0) = 1,

Kp(tf ) = 2.2164, Kg(tf ) = 0.53731, G(tf ) = 0.66746.

Our focus is on examining if emission stock remains bounded or grows unboundedly.

Figure 6 shows that for the case of low initial conditions and low atmospheric

CO2 concentration, the policy variables are able to prevent the CO2 concentration

rising unboundedly. Here too, all state and control variables move to some reasonable

steady state that keeps the CO2 concentration under control. In particular, output,

consumption, and investments all remain fairly stable, except for brief initial transition

associated with low initial levels of capital stocks.
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Figure 6: State and control trajectories for T = 200, ”small” initial values Kp(0) = 1,Kg(0) =

0.02, G(0) = 0.2, R(0) = 1,M(0) = 2.6 and prescribed terminal stationary values Kp(tf ) ==

2.2164,Kg(tf ) = 0.53731, G(tf ) = 0.66746 in (27). Top row: (left) physical capital Kp, green capital

Kg and government capital G, (middle) CO2 concentration M , (right) resource R. Middle row: (left)

investments ip, ig and tax revenue eP , (middle) consumption C (right) extraction rate u. Bottom

row: (left) consumption C and productivity Y , (middle) infrastructure ν1, (right) adaptation ν2 and

mitigation ν3.

Note that, here again, the spending on traditional infrastructure is lower at the

beginning which large efforts at mitigation, but, this time, no efforts at adaptation.

Over time, the mitigation policy slows down. During the initial periods, the spending

on mitigation starts with accounting for over 35% of the public investment in infras-

tructure, gradually falling to zero over the initial periods. The optimal solution, again,

leaves some of the fossil fuels (R) in the ground.

5 Conclusions

As a recent study by the IPCC (2018) has shown, climate policies face great challenges

in not surpassing upper limits of atmospheric CO2 concentration. In the context of

our model we can demonstrate that with proper policy actions the CO2 can be steered

down, when stocks of capital are large and the actual CO2 concentration is above a
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target level. We also show that the CO2 can be controlled not to exceed an upper limit

so that emission stay bounded by a predefined upper bound. In either case climate

policies can be scaled up through the use of resources allocated to the mitigation effort

when climate risk, due to a lack of emission reduction, is rising or too high, and future

economic, social, and ecological damages can be expected.

More generally, in all our cases, we find that the early enacting of the mitigation

effort is vital for controlling the atmospheric CO2 content whereas the adaptation

policy in most cases moves up in order of importance at a later time. Infrastructure

investment efforts are in most cases delayed. However, we want to note that these two

types of control actions might not work, in case we are currently above or below the

CO2 target, if there are – as demonstrated in simpler models by Greiner et al (2010)

and Nordhaus (2008) – tipping points and thresholds beyond which climate extremes

accelerate.

We provide some dynamic estimates of how the scaling up of efforts of mitiga-

tion and adaptation can be funded and how the funds should be allocated between

(traditional and climate related) infrastructure investment, mitigation and adaptation

efforts. Since in this context successful mitigation policy means phasing in of renew-

able energy,6 we have also explored what amount of traditional fossil energy should

be left in situ in order to satisfy some CO2 emission and temperature constraints.7.

Addressing these issues required enlarging the IAM and using the solution methods

for higher dimensional nonlinear control problems. We also showed that our numerical

solutions for finite horizon decision model have turnpike properties similar to infinite

horizon models.
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